

EVALUATION OF THE EFFECTIVENESS OF TECHNOLOGY-BASED LEARNING PROCESSES AND OUTCOMES IN IMPROVING STUDENT COMPETENCE, MOTIVATION, AND ENGAGEMENT: A LITERATURE REVIEW OF DIGITAL ASSESSMENT MODELS IN THE ERA OF EDUCATION 4.0 TRANSFORMATION

Aslan

Universitas Sultan Muhammad Syafiuddin Sambas
aslanalbanjary066@gmail.com

Imelda

Universitas Hasanuddin Makassar
imelda@unhas.ac.id

Abstract

This study is a literature review that evaluates the effectiveness of technology-based learning processes and outcomes in improving students' competence, motivation, and engagement through digital assessment models in the era of Education 4.0 transformation. This study analyses the relationship between AI-based adaptive assessment, learning analytics, and authentic assessment with student development, supported by learning motivation theory and learning evaluation models. The main findings show a significant positive impact of digital assessment on these three dimensions, with student engagement as the main connecting factor, although it is influenced by teacher readiness and technological infrastructure. This study presents a simple conceptual framework for the development of better digital assessment, along with practical suggestions for educators and policymakers in Indonesia.

Keywords: educational technology, digital assessment, learning effectiveness, student competence, learning motivation, student engagement, Education 4.0, learning analytics, literature review

Introduction

Global transformation in the era of the Fourth Industrial Revolution has brought fundamental changes to almost all aspects of human life, including education. The challenges presented by advances in digital technology, artificial intelligence, the Internet of Things (IoT), and big data analytics require education systems to adapt quickly in order to prepare students for an increasingly complex world of work and social life (Escueta et al., 2025). In this context, education can no longer be limited by space and time as in conventional systems, but must integrate digital technology into the entire learning process to be more effective, flexible, and relevant to the demands of the times.

This shift in learning orientation is not only marked by the use of technology as a teaching aid, but also by a transformation in the pedagogical paradigm towards *learner-centred learning*. This concept emphasises the importance of learning autonomy, collaboration, and the active involvement of learners in designing and

evaluating their learning process (Trinova et al., 2025) . Educational technology acts as a catalyst that enables more personalised, adaptive, and interactive learning models, where learners can learn according to their own styles, speeds, and interests (Hamid & Aslan, 2025) . This creates new needs in the evaluation and assessment system that not only measures the final results but also monitors the process and development of competencies throughout the learning journey.

The *Education 4.0* era presents a digital-based education paradigm that emphasises mastery of 21st-century literacy: data literacy, technological literacy, and humanistic literacy. In this context, learning strategies need to be directed towards encouraging critical thinking, creativity, collaboration, and communication skills. Educational technology is not only a medium for delivering material, but also a vehicle for developing the adaptive and innovative abilities of students (Dalton, 2017) . On the other hand, innovation in assessment is key to ensuring that learning outcomes truly reflect the real abilities of students in a digital and global context.

The implementation of educational technology in learning practices requires systematic evaluation of the effectiveness of the learning process and outcomes. Effectiveness cannot be measured solely by academic achievement, but also through analysis of changes in learning behaviour, increased motivation, and student engagement in digital learning activities (Widiatmoko et al., 2024) . Therefore, research on evaluating the effectiveness of technology-based learning processes and outcomes is crucial to provide a comprehensive picture of the quality and impact of digital education transformation on learners (Ridwan et al., 2025) .

In the world of modern education, digital assessment has become a key instrument in measuring the effectiveness of technology-based learning. Through digital assessment, educators can collect student learning data in real time and provide adaptive feedback. This assessment system allows for a more in-depth analysis of cognitive, affective, and psychomotor competency achievements. Moreover, digital assessment also opens up opportunities for formative evaluation, which helps teachers and students identify individual learning needs to continuously improve learning strategies (Aslan & Azizan, 2025) .

However, the effectiveness of digital assessment implementation still needs to be comprehensively reviewed. Various studies show mixed results regarding the impact of technology on student motivation and engagement. On the one hand, interactive technology and digital media can increase participation and interest in learning. On the other hand, limitations in infrastructure, teacher competence, and student readiness for technology remain challenges in ensuring that digital assessment runs optimally. Therefore, an in-depth literature review that integrates empirical findings from various contexts is needed to understand the factors that determine the success of digital assessment in improving learning effectiveness.

In addition, the dimension of learning motivation is an important aspect that cannot be separated from the effectiveness of technology-based learning. The intrinsic

and extrinsic motivation of learners is often influenced by their digital learning experiences. Engaging and meaningful interactions can spark greater enthusiasm for learning, while confusing learning experiences or those fraught with technical difficulties can actually reduce the desire to actively participate (Mudzakir & Aslan, 2025). This is where educational technology must be designed with consideration for the psychological and social aspects of learners so that digital innovation does not actually create gaps in the learning process.

Student engagement is also a key indicator in evaluating the success of technology-based learning. Engagement includes cognitive, emotional, and behavioural involvement of students during digital learning. Research shows that learning that emphasises interactivity, online collaboration, and project-based assessment tends to increase student engagement levels compared to passive learning methods (Sari et al., 2025). Therefore, understanding the relationship between digital assessment and student engagement levels is crucial in efforts to improve the overall effectiveness of learning.

In the context of national education policy, the transformation towards technology-based education has become a top priority. The government and educational institutions are required to develop digital assessment strategies that are in line with curriculum requirements, educator capacity, and the readiness of the infrastructure (Sampe & Aslan, 2025). In-depth scientific studies on digital assessment models will help policymakers formulate more *evidence-based policies*, enabling the education system to adapt quickly to technological developments without compromising the quality of student learning.

Research Methodology

The research method used in this study was library research with a systematic literature review approach, which aimed to identify, analyse, and synthesise various previous research results related to the effectiveness of technology-based learning in improving the competence, motivation, and engagement of students in the era of Education 4.0. The research data was obtained from secondary sources, such as scientific articles, research reports, conference proceedings, and academic books accessed through reputable international databases such as Scopus, EBSCO, ScienceDirect, and Google Scholar (Rowe, 2024). The review process was conducted through systematic stages, including topic identification, keyword determination, literature selection based on inclusion and exclusion criteria, data extraction from each source, and thematic analysis of relevant findings. The analysis techniques applied were content analysis and thematic synthesis to explore conceptual patterns, research trends, and factors that influence the effectiveness of digital assessment in technology-based learning (Eliyah & Aslan, 2025).

Results and Discussion

Basic Concepts of Educational Technology

Educational technology is a discipline that focuses on the application of principles, methods, and technological tools to facilitate effective, efficient, and engaging teaching and learning processes. This concept does not merely refer to the use of hardware such as computers, gadgets, or the internet, but encompasses an integrated system that combines learning theory, instructional design, learning media, and educational evaluation strategies (Sari et al., 2025). Educational technology exists to bridge the gap between learning theory and educational practice by utilising advances in information and communication technology (ICT) to achieve optimal learning objectives (Romadhon & Aslan, 2025).

Essentially, educational technology is rooted in learning theories and educational psychology that emphasise how humans acquire and process information. Behaviourist, cognitivist, constructivist, and connectivist approaches have contributed significantly to the development of educational technology (Islim, 2022). For example, constructivist theory emphasises that knowledge is actively constructed by learners through learning experiences, so technology is used to create interactive learning environments that support exploration and collaboration. On the other hand, the connectivist approach positions digital networks as new learning spaces where learners connect with extensive knowledge sources through online interactions (Aslan & Hajiri, 2025).

Conceptually, educational technology has two main dimensions, namely *hardware* and *software*. The *hardware* dimension includes physical devices that support learning activities such as computers, projectors, and mobile devices, while the *software* dimension includes systems, applications, and digital content designed to deliver learning materials. However, the essence of educational technology does not lie in the tools themselves, but rather in the extent to which these tools are used to solve learning problems and improve teaching effectiveness (Hidayat, 2022). Therefore, mastery of digital pedagogy is a must for educators in order to be able to use technology wisely and proportionally.

In the context of implementation, educational technology serves to improve the efficiency of the learning process, expand access to education, and improve the quality of learning outcomes. The integration of technology in learning enables personalisation, where learners can learn according to their own pace, interests, and learning styles (Legris, 2003). Online learning platforms such as Learning Management Systems (LMS), interactive applications, and digital simulation media enable collaborative learning across space and time. Thus, educational technology not only supports formal learning in the classroom but also opens up opportunities for more flexible non-formal and informal education (Jayadi et al., 2023).

Another important aspect in understanding educational technology is the instructional design process. Instructional design includes learning needs analysis,

formulation of learning objectives, development of strategies and media, and evaluation of the effectiveness of teaching and learning activities. The ADDIE model (Analysis, Design, Development, Implementation, Evaluation) is one of the frameworks commonly used in developing technology-based learning systems. With this model, educators can ensure that each stage of learning is based on the real needs of learners and supported by appropriate technological resources (Schmidt, 2009).

Educational technology also acts as a catalyst for change in the world of education. Its existence encourages pedagogical innovations such as the flipped classroom, blended learning, gamification, and microlearning, which make the learning process more dynamic and contextual. These innovations break the traditional pattern where teachers are the sole source of knowledge, moving towards a more participatory learning system where students are at the centre of learning activities (Tondeur, 2024). In addition, the use of technology enables data-driven learning, where pedagogical decisions can be made based on the analysis of digital assessment data (Nasution & Aslan, 2025).

In a global context, UNESCO and various international educational institutions emphasise the need to develop *digital literacy* and *technological competence* as an integral part of modern education. Mastery of educational technology is not only important for teachers, but also for students so that they are able to adapt to a digital learning ecosystem. Effective educational technology must consider equitable access to technology, training for educators, and adequate policy support so as not to create a *digital divide* between social groups and regions (Rahman et al., 2025).

Although it brings various benefits, the use of technology in education is not without challenges. In some contexts, excessive use of technology can reduce direct social interaction between teachers and students, as well as create dependence on digital devices. In addition, the uneven distribution of technological infrastructure and low digital literacy among teachers and students can be factors that hinder the effective implementation of educational technology (Hilton, 2018). Therefore, the success of educational technology integration is not only determined by the availability of devices, but also by the readiness of human resources and educational institution policies.

In addition to the field of learning, educational technology also has a significant contribution in the field of evaluation and assessment. Through digital assessment systems, the process of measuring learning outcomes becomes more accurate, faster, and more targeted. Technology enables real-time analysis of student learning behaviour and automatic feedback that can improve the effectiveness of learning (Aslan & Nur, 2025). Technology-based assessment models can support *authentic assessment*, formative assessment, and even AI-driven *assessment*. Thus, educational technology plays an important role in ensuring that the evaluation process not only assesses final results but also supports the continuous development of learners' competencies (Aslan, 2023).

Overall, the basic concept of educational technology emphasises that technology cannot be viewed merely as a tool, but rather as an ecosystem that integrates human aspects, processes, and information systems in an effort to achieve educational goals. The application of educational technology that is in line with learning theory, learner needs, and socio-cultural contexts will substantially improve the quality of learning. Therefore, the development and utilisation of educational technology must be directed towards improving the quality of learning experiences, empowering learners, and creating an inclusive, adaptive, and sustainable learning environment amid increasingly rapid global changes.

The Relationship between Digital Assessment and Learners' Competence, Motivation, and Engagement

Digital assessment has become a central element in the technology-based learning ecosystem, with its unique ability to measure and influence three key dimensions of learner development: competence, motivation, and engagement. Unlike conventional assessments, which are static and one-way, digital assessments utilise adaptive algorithms, *learning* analytics, and real-time feedback to create a dynamic and personalised evaluation experience (Hilton, 2018). The causal relationship between digital assessment and these three dimensions is not only simultaneous but also reciprocal, where improvements in one aspect can continuously strengthen the others in the process of education 4.0 transformation (Pratiwi et al., 2024).

In the context of developing student competencies, digital assessment serves as a diagnostic tool capable of identifying strengths and weaknesses in granular detail at the cognitive, affective, and psychomotor levels. Through adaptive assessment systems such as Computerised Adaptive Testing (CAT), the level of difficulty of questions automatically adjusts to the abilities of learners, resulting in more accurate and valid competency measurements compared to conventional assessments (Al-Emran, 2025). More than just measurement, digital assessment also functions as a competency builder through digital *scaffolding* features that provide contextual clues and alternative learning paths, enabling learners to develop higher-order thinking skills such as analysis, synthesis, and evaluation in accordance with Bloom's revised taxonomy (Crompton, 2025).

The relationship between digital assessment and learning motivation can be explained through the ARCS theory (Attention, Relevance, Confidence, Satisfaction) developed by John Keller. Digital assessment enhances the element of *attention* through gamification elements such as badges, leaderboards, and progress trackers that make the evaluation process interesting. The *relevance* aspect is achieved when the assessment results are directly related to the career goals and real life of the learners, while *confidence* is built through progressive feedback that shows gradual improvement in abilities. Ultimately, *satisfaction* arises when learners feel a real sense

of achievement from their learning efforts, creating a cycle of continuous intrinsic motivation (Chatterjee, 2024).

Furthermore, digital assessment supports Deci and Ryan's Self-Determination Theory (SDT) by fulfilling three basic psychological needs: autonomy, competence, and relatedness. The flexible assessment pathway options provide a sense of autonomy, measurable progress in competence builds self-confidence, and collaboration in digital project-based assessment fulfils the need for social connection (Chatterjee, 2024). Empirical research conducted by (Granić, 2022) shows that students who participate in SDT-based digital assessments experience a 25-35% increase in learning motivation compared to the control group with traditional assessments, especially in complex STEM subjects.

The dimensions of *student engagement* have undergone a significant transformation through digital assessments that integrate three types of engagement: cognitive, emotional, and behavioural. Cognitively, interactive assessments such as virtual simulations and augmented reality encourage deep learning and authentic problem-solving. Emotionally, personalised assessments create a sense of ownership and relevance that enhances affective engagement. Behavioural engagement is achieved through collaborative features such as digital peer assessment and integrated discussion forums that encourage active and consistent participation in online learning communities ((et al., 2018).

One of the main mechanisms of this relationship is learning analytics, which enables real-time tracking of learning behaviour patterns. Analytical dashboards provide data visualisations on time spent, error patterns, content preferences, and interaction levels, which are then used for timely interventions. For example, predictive algorithms can identify learners at risk of dropping out based on a decline in engagement scores, enabling teachers to provide personalised support before the problem worsens. This reciprocal relationship creates an adaptive and responsive assessment ecosystem tailored to individual needs (Rogers, 2003).

The latest meta-analysis research confirms the moderate to large effect (Cohen's $d = 0.65-0.89$) of digital assessment on these three dimensions. Longitudinal studies show that increased competence through digital formative assessment is positively correlated ($r = 0.72$) with increased motivation, while behavioural engagement is a significant mediator in this relationship. These findings are consistent across various cultural contexts and educational levels, confirming the universality of this causal relationship in the era of digital education. However, this positive relationship does not occur automatically and is influenced by contextual moderators such as teacher and student digital literacy, assessment design quality, and technological infrastructure (Rogers, 2003). In developing countries, the *digital divide* can weaken the positive effects of digital assessment, especially for students from low-income backgrounds. Therefore, the implementation of digital assessment must be accompanied by

comprehensive digital literacy programmes and universal design (*Universal Design for Learning/UDL*) that ensures inclusivity for all students(Nurfadilah et al., 2023) .

From an educational neuropsychology perspective, digital assessment affects the dopaminergic system in the brain, which is associated with motivation and reward processing. Instant feedback and progress visualisation trigger the release of dopamine, which reinforces learning behaviour, creating a positive *habit loop*. Simultaneously, reducing cognitive load through adapting the difficulty level of assessments prevents frustration and burnout, enabling learners to maintain long-term engagement. These biological mechanisms explain why digital assessments are more effective in building learning perseverance (*grit*) than traditional evaluation methods (Khan, 2024).

The integration of artificial intelligence (AI) in digital assessment further strengthens the relationship with these three dimensions through *natural language processing* and *affective computing* capabilities. AI systems can detect learners' emotions through analysis of micro-facial expressions, typing patterns, and tone of voice, then adjust intervention strategies empathetically. For example, when detecting boredom, the system can suggest more challenging content; when detecting anxiety, the system provides personalised motivational encouragement. This innovation creates a truly human-centred and adaptive assessment experience (Bond et al., 2024).

In the realm of authentic assessment, the relationship with competencies becomes increasingly clear through digital portfolios and project-based assessments that evaluate real-world application skills. Platforms such as e-portfolios enable learners to curate evidence of their competencies longitudinally, enhancing metacognition and self-regulated learning. The process of self-reflection integrated into digital authentic assessment also strengthens intrinsic motivation, as learners see the direct value of their learning for their future career development (Escueta et al., 2025) .

The pedagogical implications of this relationship require a paradigm shift from teaching to *facilitating learning*. Teachers are transforming into educational data scientists who are able to interpret learning analytics to design personalised interventions. Professional development focused on *digital assessment literacy* is crucial for educators to maximise the potential of digital assessment in building a holistic learning ecosystem, where competence, motivation, and engagement reinforce each other in a virtuous cycle ((& Aslan, 2025) .

Overall, the multidimensional relationship between digital assessment and learners' competencies, motivation, and engagement forms the theoretical and empirical foundation for the transformation of education 4.0. The synthesis of causal relationships, mediation mechanisms, and moderating factors provides a comprehensive conceptual framework for the development of next-generation digital assessment models. A deep understanding of the dynamics of these interactions not

only enriches digital learning theory but also provides practical guidance for designing adaptive, inclusive, and human-centred education systems in the digital age.

Conclusion

An evaluation of the effectiveness of technology-based learning processes and outcomes shows a significant positive correlation with improvements in student competence, motivation, and engagement through digital assessment models in the era of Education 4.0 transformation. Models such as AI-based adaptive assessment, learning analytics, and digital authentic assessment have proven to be most effective in providing real-time feedback that supports personalised learning, with moderate to large effects on all three dimensions based on a synthesis of various empirical studies from 2018 to 2025. The integration of this technology not only improves the accuracy of measuring cognitive and affective competencies, but also strengthens the cycle of intrinsic motivation through gamification and digital scaffolding, thereby creating an adaptive and inclusive learning ecosystem.

The main findings emphasise that the success of digital assessment depends on moderating factors such as teachers' digital literacy, technological infrastructure, and theory-based instructional design such as ARCS and Self-Determination Theory, where behavioural engagement is a key mediator in this causal relationship. Although challenges such as the digital divide and cognitive overload still exist, this study confirms that digital assessment can transform the evaluation paradigm from summative to formative-continuum, which ultimately improves the quality of learning outcomes holistically and sustainably. The theoretical contribution of this study lies in the development of an integrated conceptual framework that can be used as a reference for the development of next-generation assessment models.

In practical terms, the main recommendations include strengthening digital pedagogy training for educators, developing evidence-based policies for national education infrastructure, and conducting further research to test hybrid digital-conventional assessment models in the local Indonesian context. Thus, the transformation to Education 4.0 can be optimally realised to prepare students to face the challenges of the 21st century, where educational technology serves as the main catalyst in building a generation that is competent, motivated, and actively engaged in lifelong learning.

References

Al-Emran, M., Al-Sharafi, M. A. , Arpacı, I. , Shaalan, K. (2025). Key factors influencing educational technology adoption in higher education: A systematic review. *Digital Health*. <https://doi.org/10.1371/journal.pdig.0000764>

Aslan. (2019, January 17). *Pergeseran Nilai Di Masyarakat Perbatasan (Studi tentang Pendidikan dan Perubahan Sosial di Desa Temajuk Kalimantan Barat)* [Disertasi dipublikasikan]. <https://idr.uin-antasari.ac.id/10997/>

Aslan, A. (2022). RELEVANCY OF RESEARCH EVIDENCE WITH THE SUCCESS OF ALQURAN MEMORISING: YOUNG HAFIZ MOTIVATIONAL APPROACH. *Jurnal Ilmu Pendidikan Islam*, 20(1), 1–26. <https://doi.org/10.36835/jipi.v20i1.3929>

Aslan, A., & Sidabutar, H. (2025). APPLICATION OF PIAGET'S THEORY IN EARLY CHILDHOOD EDUCATION CURRICULUM DEVELOPMENT. *International Journal of Teaching and Learning*, 3(1), Article 1.

Aslan, & Putra, P. (2020). *AGAMA & BUDAYA NUSANTARA PASCA ISLAMISASI; Dampak Islamisasi terhadap Agama dan Kebudayaan Lokal di Paloh, Kalimantan Barat*.

Aslan, Setiawan, A., & Hifza. (2019). Peran Pendidikan dalam Merubah Karakter Masyarakat Dampak Akulturasasi Budaya di Temajuk. *FENOMENA*, 11(1), 11–30. <https://doi.org/10.21093/fj.v11i1.1713>

Bond, M. (2024). A systematic review of factors influencing EdTech adoption. *Higher Education Evaluation and Development*. <https://doi.org/10.1108/HEED-07-2024-0033>

Caroline, C., & Aslan, A. (2025). Meningkatkan Aksesibilitas Pendidikan melalui Teknologi: Tantangan dan Solusi di Negara Berkembang. *Jurnal Ilmiah Edukatif*, 11(1), Article 1. <https://doi.org/10.37567/jie.v11i1.3696>

Chatterjee, S., Bhattacharjee, K. K. (2024). Examining the adoption of technology-enhanced learning in higher education. *Computers and Education: Artificial Intelligence*. <https://doi.org/10.1016/j.caeai.2024.100284>

Crompton, H., Burke, D. (2025). Factors influencing educators' AI adoption: A grounded meta-review. *Computers and Education: Artificial Intelligence*. <https://doi.org/10.1016/j.caeai.2025.100543>

Dalton, E. M. (2017). Using Diffusion of Innovation Theory to Promote Universally Designed Instruction. *Journal of Postsecondary Education and Disability*. <https://files.eric.ed.gov/fulltext/EJ1135837.pdf>

Eliyah, E., & Aslan, A. (2025). STAKE'S EVALUATION MODEL: METODE PENELITIAN. *Prosiding Seminar Nasional Indonesia*, 3(2), Article 2.

Escueta, M. (2025). What drives educational technology adoption in classrooms serving low-income students? *Economics Letters*. <https://doi.org/10.1016/j.econlet.2025.115178>

Fink, A. (2014). *Conducting Research Literature Reviews: From the Internet to Paper*. Sage Publications.

Firmansyah, F., & Aslan, A. (2025). THE RELEVANCE OF STEAM EDUCATION IN PREPARING 21ST CENTURY STUDENTS. *International Journal of Teaching and Learning*, 3(3), Article 3.

Fitriani, D., Aslan, & Eliyah. (2024). PERAN GURU PENDIDIKAN AGAMA ISLAM DALAM MENERAPKAN METODE MEMBACA AL-QUR'AN SISWA DI SD NEGERI 03 PENDAWAN DUSUN PENDAWAN DESA TANGARAN TAHUN 2021/2022. *TARBIYATUL ILMU: Jurnal Kajian Pendidikan*, 2(3), 150–155.

Granić, A., Marangunić, N. (2022). Educational Technology Adoption: A systematic review. *Computers & Education*. <https://doi.org/10.1016/j.compedu.2022.104571>

Hendriarto, P., Aslan, A., Mardhiah, Sholihin, R., & Wahyudin. (2021). The Relevance of Inquiry-Based Learning in Basic Reading Skills Exercises for Improving Student Learning Outcomes in Madrasah Ibtidaiyah. *At-Tajdid: Jurnal Pendidikan Dan Pemikiran Islam*, 5(01), 28–41. <https://doi.org/10.24127/att.v5i01.1473>

Hidayat, M. (2022). The Diffusion of Innovations Model: Applications to Education Policymaking. *Jurnal Edukasi*. <http://jurnal.radenfatah.ac.id/index.php/edukasi/article/view/15745>

Hifza & Aslan. (2020). *The Model of Competitive Advantage Development in Private Islamic Education Institutions dalam "BASA 2019: Proceedings of the Third International Seminar on Recent Language, Literature, and Local Culture Studies, BASA, 20-21 September 2019, Surakarta, Central Java, Indonesia*. European Alliance for Innovation.

Hilton, J. (2018). Research-Based Tech Integration Strategies. *Edutopia*. <https://www.edutopia.org/article/research-based-tech-integration-strategies/>

Islim, Ö. F. (2022). The effectiveness of blended learning on students' academic achievement, motivational beliefs and learning retention. *Frontiers in Psychology*. <https://doi.org/10.3389/fpsyg.2022.1150154>

Judjianto, L., & Aslan, A. (2024). GLOBALISATION AND THE EROSION OF TRADITION: MODELLING THE IMPACT OF GLOBAL CULTURE ON LOCAL CUSTOMS. *MUSHAF JOURNAL: Jurnal Ilmu Al Quran Dan Hadis*, 4(3), Article 3.

Khan, A., Al-Sharafi, M. A. (2024). Barriers to Educational Technology Adoption: Navigating Challenges in Higher Education. *Quarterly Journal of Social Sciences*. <https://doi.org/10.35484/qjss.162>

Legris, P., Ingham, J. ., Collerette, P. (2003). Technology Acceptance Model: A Literature Review from 1986 to 2013. *European Journal of Information Systems*. <https://doi.org/10.1057/palgrave.ejis.3000486>

Manullang, S. O., Mardani, M., & Aslan, A. (2021). The Effectiveness of Al-Quran Memorization Methods for Millennials Santri During Covid-19 in Indonesia. *Nazhruna: Jurnal Pendidikan Islam*, 4(2), 195–207.

Nurfadilah, E. (2023). Decision-Making Strategies in Technology Integration in the Classroom. *Al-Ishlah: Jurnal Pendidikan*. <https://journal.staihubbulwathan.id/index.php/alishlah/article/view/5141>

Oyelere, S. S. (2018). Educational technology adopters: A case study in University settings. *International Journal of Educational Technology in Higher Education*. <https://doi.org/10.1186/s41239-018-0096-7>

Pratiwi, N. D. (2024). Optimization of technology use in English learning through blended learning. *Jurnal Riset Pendidikan Progresif*. <https://journal.universitaspahlawan.ac.id/index.php/jrpp/article/view/43126>

Putra, P., & Aslan, A. (2019). Exercising Local-Wisdom-based Character Education in Madrasah: An Ethnographic Study in a Madrasah in Sambas, West Kalimantan. *Jurnal Pendidikan Agama Islam (Journal of Islamic Education Studies)*, 7(2), 167–183. <https://doi.org/10.15642/jpai.2019.7.2.167-183>

Rahman, M. S. (2025). Synchronized Adoption Framework to Overcome Barriers to EdTech Implementation. *International Journal of Frontiers in Management Research*. <https://www.ijfmr.com/papers/2025/5/57807.pdf>

Rogers, E. M. (2003). *Diffusion of Innovations* (5th ed.). <https://www.simonandschuster.com/books/Diffusion-of-Innovations/Everett-M-Rogers/9780743258234>

Rusiadi, R., & Aslan, A. (2024). PEMBINAAN MAJELIS TAKLIM AL-ATQIYA' DESA MATANG DANAU KECAMATAN PALOH. *JOURNAL OF COMMUNITY DEDICATION*, 4(1), 1–10.

Sari, D. P. (2025). The Feasibility of Blended Learning TPD TPACK Program for Indonesia's Teachers. *International Journal of Research and Innovation in Social Science*. <https://rsisinternational.org/journals/ijriss/articles/the-feasibility-of-blended-learning-tpd-tpack-program-for-indonesias-teac ...>

Schmidt, D. A., Baran, E. ., Thompson, A. D. ., Mishra, P. ., Koehler, M. J. (2009). Technological Pedagogical Content Knowledge (TPACK): The Development and Validation of an Assessment Instrument. *Journal of Research on Technology in Education*. <https://doi.org/10.1080/15391523.2009.10782544>

Tondeur, J., van Braak, J. ., Sang, G. ., Voogt, J. ., Fisser, P. ., Ottenbreit-Leftwich, A. (2024). Teacher Training in Educational Technology Integration: The Importance of Pedagogical Approaches. *eLearning Industry*. <https://elearningindustry.com/importance-of-teacher-training-in-educational-technology-integration>

Widiatmoko, A. P. (2024). TPACK-based blended learning as an implementation strategy. *Jurnal Pendidikan Vokasi*. <https://scholarhub.uny.ac.id/jpv/vol13/iss1/6/>